Package 'quantregRanger'

Title: Quantile Regression Forests for 'ranger'
Description: This is the implementation of quantile regression forests for the fast random forest package 'ranger'.
Authors: Philipp Probst [aut, cre]
Maintainer: Philipp Probst <[email protected]>
License: GPL-3
Version: 1.0
Built: 2024-11-04 03:17:55 UTC
Source: https://github.com/philipppro/quantregranger

Help Index


quantregRanger prediction

Description

Predicts quantiles for a quantile regression forest trained with quantregRanger.

Usage

## S3 method for class 'quantregRanger'
predict(object, data = NULL, quantiles = c(0.1,
  0.5, 0.9), all = TRUE, obs = 1, ...)

Arguments

object

quantregRanger object.

data

New test data of class data.frame

quantiles

Numeric vector of quantiles that should be estimated

all

A logical value. all=TRUE uses all observations for prediction. all=FALSE uses only a certain number of observations per node for prediction (set with argument obs). The default is all=TRUE

obs

An integer number. Determines the maximal number of observations per node

...

Currently ignored. to use for prediction. The input is ignored for all=TRUE. The default is obs=1

Value

A matrix. The first column contains the conditional quantile estimates for the first entry in the vector quantiles. The second column contains the estimates for the second entry of quantiles and so on.


Quantile Regression with Ranger

Description

Creates a quantile regression forest like described in Meinshausen, 2006.

Usage

quantregRanger(formula = NULL, data = NULL, params.ranger = NULL)

Arguments

formula

Object of class formula or character describing the model to fit.

data

Training data of class data.frame, matrix or gwaa.data (GenABEL).

params.ranger

List of further parameters that should be passed to ranger. See ranger for possible parameters.

Author(s)

Philipp Probst

References

Meinshausen, Nicolai. "Quantile regression forests." The Journal of Machine Learning Research 7 (2006): 983-999.

See Also

predict.quantregRanger

Examples

y = rnorm(150)
x = cbind(y + rnorm(150), rnorm(150))
data = data.frame(x,y)
mod = quantregRanger(y ~ ., data = data, params.ranger = list(mtry = 2))
predict(mod, data = data[1:5, ], quantiles = c(0.1, 0.5, 0.9))